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This paper presents a recent development of a hybrid adaptive control method that further
extends the intelligent flight control technology to improve command-tracking performance
of aircraft operating in off-nominal flight conditions. The hybrid method is based on adaptive
learning laws for online parameter estimation of aircraft plant dynamics in conjunction with
an existing neural net direct adaptation strategy. Two parameter estimation learning laws are
presented: 1) an indirect adaptive learning law derived from the Lyapunov stability theory,
and 2) a recursive least-squares learning law. Simulations of a damaged generic aircraft
demonstrate the effectiveness of the proposed hybrid intelligent flight control method.

Nomenclature
A state matrix for tracking error
B control matrix for tracking error
C neural network basis functions
e tracking error
F1, F2 state transition matrices for angular rates and trim states
G control influence matrix for flight control surfaces
I identity matrix
J cost function
KP , KI proportional and integral gain matrices
L, V Lyapunov candidate functions
P Lyapunov matrix
p, q, r roll, pitch, and yaw rates
Q semi-positive definite matrix
R positive definite matrix
T0 persistent excitation sampling period
u, v, w, V forward, lateral, vertical, and absolute airspeeds
ue, uad pseudo-control and neural net command augmentation control vectors
W,Wω,Wσ,Wδ neural network weight matrices
α, β, θ, φ angles of attack, sideslip, pitch, and bank
α0, α1 persistent excitation levels
β, βω, βσ , βδ composite neural network basis functions
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	, � learning rate constant and matrix

 difference operator

 error bound
δ control surface deflection vector
δT , δa, δe, δr engine throttle, and aileron, elevator, and rudder deflections
ε dynamic inversion error
ζp, ζq, ζr reference-model roll, pitch, and yaw damping ratios
η, ϑ, λ, ν, ϕ, ξ recursive least-squares forgetting factor parameters
θ, φ input and neural net weight vectors
λmin, λmax minimum and maximum eigenvalue
μ, η e-modification parameter constant and matrix
σ trim state vector
ω, ωe, ωd angular rate, angular rate error, and desired angular rate vectors
ωc, ωm, ωn angular rate command vector, reference model vector, reference model frequency matrix
ωp, ωq, ωr reference model roll, pitch, and yaw frequencies

Subscripts
i sampling period
j time step

Superscripts
ˆ estimated value
˜ neural network weight matrix variation
∗ ideal value

I. Introduction

AN aircraft flight control system is carefully designed to provide good stability and command-following perfor-
mance to achieve mission objectives. Most conventional flight control systems use extensive gain-scheduling to

achieve desired handling qualities. While this approach has proved to be very successful, the development process
can be expensive and often results in aircraft-specific implementations. Moreover, under off-nominal flight condi-
tions owing to external factors such as wind shear and turbulence or aircraft degradation resulting from failures or
damage, a flight control system will need to be able to adapt to these sources of uncertainty. For example, during a
damage situation, numerous effects may be present that can overwhelm a pilot’s ability to control an aircraft safely.
These effects may include aerodynamic changes, structural degradation, engine damage, reduced flight control effec-
tiveness, and others. The conventional gain-scheduling approach is not sufficiently flexible to provide this online
adaptation to account for these unknown dynamics.

Over the past several years, various adaptive control techniques have been investigated [1–9]. Fault-tolerant
adaptive flight control has been developed to provide a possibility for maintaining aircraft stability and performance
by means of enabling a flight control system to adapt to system uncertainties [10,11]. Meanwhile, a large area
of research in neural net adaptive control has emerged and spans many different applications such as spacecraft
and aircraft flight control. An essential element of a neural net adaptive flight control is a neural network system
designed to accommodate changes in aircraft dynamics owing to system uncertainties. Neural network is known
to be a good universal approximator of many nonlinear functions that can be used to model system uncertainties.
In the implementation of a neural net adaptive flight control, the neural network is typically incorporated within a
direct adaptive control architecture to provide an augmentation to a pilot command. The neural network estimates the
system uncertainties and outputs directly a command augmentation signal that compensates for changes in aircraft
dynamics.

Research in adaptive control has spanned several decades, but challenges in obtaining robustness in the presence
of unmodeled dynamics, parameter uncertainties, or disturbances as well as the issues with verification and validation
of adaptive flight control software still remain [2,12]. Adaptive control laws may be divided into direct and indirect
approaches. Indirect adaptive control methods typically employ parameter identification techniques to compute
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control parameters [13]. Parameter identification techniques such as recursive least-squares and neural networks
have been used in indirect adaptive control methods [3]. In recent years, model-reference direct adaptive control
using neural networks has been a topic of great research interest [4–6]. Lyapunov stability theory has been used to
establish stability of neural network learning laws.

NASA has been developing an intelligent flight control technology based on the work by Rysdyk and Calise [4].
Recently, this technology has been demonstrated on an F-15 fighter aircraft [14]. The intelligent flight control uses a
model-reference, direct adaptive, dynamic inversion control approach. The neural net direct adaption is designed to
provide consistent handling qualities without requiring extensive gain-scheduling or explicit system identification.
This particular architecture uses both pre-trained and online learning neural networks and a reference model to
specify desired handling qualities. Pretrained neural networks are used to provide estimates of aerodynamic stability
and control characteristics. Online learning neural networks are used to compensate for errors and adapt to changes
in aircraft dynamics. As a result, consistent handling qualities may be achieved across flight conditions.

One potential problem with a neural net direct adaptive flight control is the possibility of a high gain control owing
to aggressive learning, which is characterized by a large learning rate for the neural network learning law to reduce the
error signal rapidly. The high gain control signal can potentially result in a control augmentation command that may
saturate the control authority or excite unmodeled dynamics of the plant and can adversely affect the stability of the
direct adaptive learning law. Moreover, during off-nominal flight conditions, the aircraft plant dynamics are degraded
and this can consequently present a problem for a pilot to safely navigate the aircraft within a reduced flight envelope.
For example, changes in stability and control derivatives can potentially cause a pilot to apply excessive or incorrect
stick commands that could worsen the aircraft handling qualities. Direct adaptive control approaches accommodate
changes in plant dynamics implicitly but do not provide an explicit means for ascertaining the knowledge of the
plant dynamics, which can potentially be used to improve the control law. Furthermore, the improved knowledge of
the plant dynamics can potentially be used to develop fault detection and isolation strategies, as well as emergency
flight planning to provide guidance laws for energy management during a descent, approach, and landing.

Toward this end, we introduce a new method for augmenting the existing direct adaptive intelligent flight control
that provides an opportunity to perform an online parameter estimation of the aircraft plant dynamics explicitly. We
call this approach a hybrid intelligent flight control. Two adaptive learning laws are developed to provide parameter
estimation of the plant dynamics that will be used in the dynamic inversion controller. As a result, the control
command will result in a smaller dynamic inversion error so that the learning of the direct adaptation neural network
can be reduced.

II. Hybrid Intelligent Flight Control Architecture
Figure 1 illustrates the proposed hybrid intelligent flight control. The control architecture comprises: 1) a reference

model that translates rate commands into desired acceleration commands; 2) a proportional–integral (PI) feedback
control for rate stabilization and tracking; 3) a dynamic inversion controller that computes actuator commands using

Fig. 1 Hybrid intelligent flight control.
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desired acceleration commands; 4) a neural net direct adaptation owing to Rysdyk and Calise [4], and 5) a neural net
indirect adaptation that performs parameter estimation of the aircraft plant dynamics. In the present study, we have
developed two learning laws for the parameter estimation: 1) an indirect adaptive learning law based the Lyapunov
stability theory and 2) a recursive least-squares learning law based on the optimal estimation theory.

Under off-nominal flight conditions such as failure and or damage events, aircraft plant dynamics can deviate
significantly from the nominal behaviors. Consequently, this can pose a significant challenge to a flight control
system. To develop an adaptive control strategy, consider the linearized equations of angular motion of an aircraft
operating in off-nominal flight conditions as

ω̇ = ω̇∗ + 
ω̇ = F1ω + F2σ + Gδ (1)

where ω̇∗ is the ideal angular acceleration; 
ω̇ is the perturbation term owing to changes in aircraft plant dynamics
and uncertainties; and F1, F2, and G are the plant matrices.

The ideal aircraft plant dynamics is expressed in a state space form as

ω̇∗ = F∗
1ω + F∗

2σ + G∗δ (2)

where ω = [p q r]� is a vector of the aircraft roll, pitch, and yaw rates; σ = [
α 
β 
φ 
δT ]� is a vector of
the variations in trim angle of attack, sideslip angle, bank angle, and engine throttle; δ = [δa δe δr ]� is a vector of
the aileron, elevator, and rudder deflections; and F∗

1, F∗
2, and G∗ are the nominal aircraft plant matrices which are

assumed to be known.
The plant uncertainty is casted in the form of


ω̇ = 
F1ω + 
F2σ + 
Gδ (3)

where 
F1, 
F2, and 
G are the unknown plant matrices owing to system uncertainties.
A reference model is used to specify desired handling qualities. The control adaptation must be able to accom-

modate system uncertainties using the available flight control surfaces. A reference model is used to filter a rate
command ωc into a reference angular rate ωm and a reference angular acceleration ω̇m via a first-order model

ω̇m + ωnωm = ωnωc (4)

where ωn = diag(ωp, ωq, ωr) is a reference model frequency matrix.
The reference model frequency parameters must be chosen appropriately to obtain a good transient response that

satisfies position and rate limits on the control surface deflection. Generally, the goal of an adaptive flight control
is to be able to follow the reference model of the nominal aircraft. It is possible, however, that the adaptive flight
control may not be able to track the reference model if the aircraft performance is significantly reduced under adverse
conditions. In such a situation, it may become necessary to change the reference model so that the flight control
system can better respond to a pilot command. The adjustment of the reference model parameters can be performed
using various methods such as the adaptive-critic approach [8] to ensure that the flight control can track the reference
model to achieve desired handling qualities. Thus, an effective control strategy may combine both the reference
model adjustment as well as the adaptive flight control.

The reference model angular rate ωm is compared with the actual angular rate output ω to form a tracking error
signal ωe = ωm − ω. A pseudo-feed back control ue is constructed using a PI feedback scheme to regulate errors in
the roll , pitch, and yaw rates. The error dynamics must have a good frequency response that can track the reference
model without an interference with actuator dynamics. The pseudo-control vector ue is computed as

ue = KP ωe + KI

∫ t

0
ωe dτ (5)

To maintain a reasonable tracking performance and loop gains, it is found that the proportional and integral gains
can be selected to achieve a second-order error dynamics according to

KP = diag(2ζpωp, 2ζqωq, 2ζrωr) (6)

KI = diag(ω2
p, ω2

q, ω
2
r ) (7)
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A dynamic inversion controller is computed to obtain an estimated control surface deflection command δ̂ to achieve
the desired angular acceleration ω̇d using an estimated plant dynamics

δ̂ = Ĝ
−1

(ω̇d − F̂1ω − F̂2σ) (8)

δ̂ = G−1(ω̇d − F1ω − F2σ) (9)

where F̂1 = F∗
1 + 
F̂1, F̂2 = F∗

2 + 
F̂2, Ĝ = G∗ + 
Ĝ are the estimated off-nominal plant matrices and Ĝ is
assumed to be invertible.

As the true damaged plant dynamics are different from the ideal plant dynamics, the dynamic inversion controller
incurs a dynamic inversion error equal to

ε = ω̇ − ω̇d = 
ε − 
F̂1ω − 
F̂2σ − 
Ĝδ̂ (10)

where 
ε = 
ω̇.
In order for the dynamic inversion controller to track the reference model angular acceleration ω̇m, the desired

angular acceleration ω̇d is set equal to

ω̇d = ω̇m + ue − uad (11)

where uad is a direct adaptive control augmentation signal designed to cancel out the dynamic inversion error so that,
in an ideal setting, as the tracking error goes to zero asymptotically, the desired angular acceleration ω̇d is equal to
the reference model angular acceleration ω̇m.

The tracking error dynamics then becomes

ė = Ae + Buad + B
F̂1ω + B
F̂2σ + B
Ĝδ̂ − B
ε (12)

where e =
[∫ t

0 ωe dτ ωe

]�
is the tracking error and

A =
[

0 I
−KI −KP

]
, B =

[
0
I

]

The direct adaptive signal uad is computed from a single-layer sigma-pi neural network

uad = W�β(C1, C2, C3, C4, C5, C6) (13)

where β is a vector of basis functions computed using Kronecker products with Ci , i = 1, . . . , 6, as inputs into the
neural network consisting of control commands, sensor feedback, and bias terms.

In particular, the Kronecker product terms are

C1 = ρV 2
[
ω� αω� βω�]

(14)

C2 = ρV 2
[
1 α β α2 β2 αβ

]
(15)

C3 = ρV 2
[
δ� αδ� βδ�]

(16)

C4 = [
pω� qω� rω�]

(17)

C5 = [
uω� vω� wω�]

(18)

C6 = [
1 θ φ δT

]
(19)

The basis function is then expressed as

β = [
C1 C2 C3 C4 C5 C6

]�
(20)

Figure 2 illustrates the sigma-pi neural network with an optional hidden layer.
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Fig. 2 Sigma-pi neural network.

The update law for the neural net weights W is [4]

Ẇ = −	
(
βe�PB + μ

∥∥e�PB
∥∥W

)
(21)

where 	 > 0 is the learning rate, μ > 0 is a parameter to improve robustness based on the e-modification scheme [7],
P solves the Lyapunov equationA�P + P�A = −Q for some positive-definite matrix Q, and ‖.‖ is a Frobenius norm.

The key feature of the hybrid intelligent flight control is a neural net indirect adaptation strategy designed to
perform online parameter estimation of the plant matrices F̂1, F̂2, Ĝ using a suitable adaptive learning law. The
parameter estimation enables the dynamic inversion controller to be updated continuously. As the adaptive learning
law reduces the estimation error, the accuracy of the dynamic inversion controller increases, thereby resulting in
a decrease in the tracking error. Any residual tracking error can then be handled by the neural net direct adaptive
control.

A. Indirect Adaptive Learning Law
In this approach, we would like to update the dynamic inversion controller using an indirect adaptive learning law

that performs online estimation of the unknown plant dynamics owing to system uncertainties. The indirect adaptive
learning law is given by

�̇ = −�
(
θe�PB + η

∥∥e�PB
∥∥ �

)
(22)

where �� = [
W�

ω W�
σ W�

δ

]
is a neural net weight matrix, θ� = [ω�β�

ω σ�β�
σ δ̂

�
β�

δ ] is an input matrix, � =
diag(	ω, 	σ, 	δ) > 0 is a learning rate matrix, and η = diag(μω, μσ, μδ) is the e-modification parameter matrix
which provides robustness to unmodeled dynamics [7].

The estimated plant dynamics are then updated as

F̂1 = F∗
1 + W�

ωβω (23)

F̂2 = F∗
2 + W�

σ βσ (24)

Ĝ = G∗ + W�
δ βδ (25)

where Wω, Wσ , and Wδ are the corresponding neural net weight matrices; and βω, βσ , and βδ are neural net basis
functions which can be any suitable subsets of β such as

βω = ρaV
2

⎡
⎣1 α β

1 α β

1 α β

⎤
⎦

�

(26)
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βσ = ρaV
2 (27)

βδ = βω (28)

The proof of this indirect adaptive learning law is provided in Appendix A.
The input signals that feed into the neural net indirect adaptive learning law are ω, σ, and δ̂. As the sigma-pi

neural network is linear in parameters, a potential problem can exist if the input signals for some reason become
unbounded. Physically, this scenario can correspond to large input signals which can lead to a high-gain control
situation. Suppose that ω, σ, δ̂ /∈ L∞, the indirect adaptive learning law will become unstable because ω, σ, and δ̂

are unbounded. In this case, we must modify the indirect adaptive learning law to handle large input signals by a
normalization method [13]. Toward that end, we note that ω(1 + ω�Rω)−1 ∈ L∞ even though ω /∈ L∞ as

lim
ω→∞

ω

1 + ω�Rω
= 0 (29)

where R is a positive-definite weight matrix.
The indirect adaptive learning law for unbounded input signals can therefore be normalized as

�̇ = −�a

(
θe�PB + η

∥∥e�PB
∥∥ �

)
(30)

where �a is a normalized learning rate matrix defined as

�a = �
(
I + θ�Rθ

)−1
(31)

and I is the identity matrix.
Thus, the effect of the normalized learning rate is such that it reduces the learning process when the input signals

become large to prevent any instability in the learning algorithm. As the learning algorithm become stable, the
learning rate can increase to decrease the error further.

B. Recursive Least-Squares Learning Law
Another neural net learning law for online parameter estimation is the well-known recursive least-squares method.

If the dynamic inversion error can be estimated, then a recursive least-squares learning law can be applied to determine
the weight matrices Wω, Wσ , and Wδ. Suppose the estimated dynamic inversion error can be written as

ε = ��θ + 
ε (32)

where 
ε is the estimation error of 
ω̇.
Then, the estimated dynamic inversion error is

ε̂ = ˙̂ω − F∗
1ω − F∗

2σ − G∗δ̂ (33)

where ˙̂ω is the estimated angular acceleration which may be subject to computational errors.
Generally, the angular acceleration may not be available from rate gyro sensors. In such a case, one method

of estimating ˙̂ω is to use a backward finite-difference method

˙̂ωj = ω̃j − ω̃j−1


t
(34)

to estimate ˙̂ω at the j th time step, but this method can result in a significant error if 
t is either too small or too large.
The derivative computation will introduce an error source 
ε. If the error is unbiased, that is, it can be characterized
as a white noise about the mean value, then the recursive least-squares learning law can be applied to estimate the
off-nominal plant dynamics.
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The recursive least-squares learning law is given by

�̇ = (1 + ξ)−1 Rθ
(
ε̂

� − θ��
)

(35)

where

Ṙ = − (1 + ξ)−1 θ�R (36)

ξ = θ�Rθ (37)

The matrix R is called the covariance matrix and the recursive least-squares learning law has a very similar form
to the Kalman filter with Eq. (36) as a differential Riccati equation for a zero-order plant dynamics. The recursive
least-squares learning law can be shown to be stable in Appendix B along with the proof of the recursive least-squares
learning law.

In practice, the recursive least-squares learning law can be used to estimate the plant dynamics either continuously
or discretely at every n data samples. Continuous time estimation requires solving the differential equations (35) and
(36) at each time step. On the other hand, the discrete-time sampling estimation provides more flexibility in that the
estimation can be executed after a specified number of data points have been collected. This would ensure that the
signals contained in the sampled data are sufficiently rich to enable an accurate convergence. In the implementation
of the hybrid intelligent flight control algorithm, we use the following discrete-time recursive least-squares learning
law with an adaptive or directional forgetting factor [15]:

�i+1 = �i + (1 + ξi)
−1 Riθi

(
ε̂

�
i+1 − θ�

i �i

)
(38)

Ri+1 = Ri − (
ψ−1

i+1 + ξi+1
)−1

Riθiθ
�
i Ri (39)

where ψ is defined as

ψi+1 = ϕi+1 − ξ−1
i (1 − ϕi+1) (40)

The value of the adaptive directional forgetting factor ϕ is then calculated at each sampling period as

ϕ−1
i+1 = 1 + (1 + ν) ln

{
(1 + ξi+1) +

[
ηi+1 (1 + ϑi+1)

1 + ξi+1 + ηi+1
− 1

]
ξi+1

1 + ξi+1

}
(41)

where ν is a constant; and η and ϑ are parameters with the following update laws

ηi+1 = λ−1
i+1

∥∥ε̂i+1 − ��
i θi

∥∥2
(42)

ϑi+1 = ϕi+1 (1 + ϑi) (43)

λi+1 = ϕi+1

[
λi + (1 + ξi+1)

∥∥ε̂i+1 − ��
i θi

∥∥2
]

(44)

III. Simulations
To evaluate the hybrid intelligent flight control with the indirect adaptive and the recursive least-squares learning

laws, simulations of a damaged twin-engine generic aircraft, as shown in Fig. 3, are performed in the MATLAB-
environment [16]. The damage is simulated with a 25% loss of the left wing. In general, damage to the airframe
can result in changes in aerodynamic chatacteristics of an aircraft that can cause a contraction in the original flight
envelope. Adaptive control augments a flight control system to provide necessary aircraft stabilization to ease the
pilot’s workload. For safe flight, the role of guidance is also critical, given that the damaged aircraft may no longer
be able to perform nomal flight maneuvers. The ability to generate feasible flight plans that assist the pilot in making
a sound decision to navigate the aircraft to a safe landing is the ultimate goal of flight guidance [17].
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Fig. 3 Generic damaged aircraft.

Fig. 4 Pitch doublet tracking performance.

For the simulation, a pilot pitch command is simulated with a series of step input pitch doublets. The tracking
performance of the hybrid intelligent flight control is as shown in Fig. 4. It can be seen that the indirect adaptive
learning law provides some degree of improvement in the tracking performance over the direct adaptive control. In
contrast, the recursive least-squares learning law performs much better than both the direct and indirect adaptive
learning laws as it provides a very accurate tracking performance of pitch channel command.

Figures 5 and 6 are the responses of the roll and yaw rates during the pitch doublet maneuver. Owing to asymmetric
wing damage, the roll performance of the aircraft should be expected to be most affected. The hybrid recursive least-
squares learning law is able to maintain both the roll and yaw rates near zero much better than both the direct and
hybrid indirect adaptive learning laws. Figure 7 shows the norms of the tracking error in the roll, pitch, and yaw rates
for the three adaptive control laws. The hybrid recursive least-squares learning law achieves the smallest tracking
error norm, while the hybrid indirect adaptive learning law shows a significant reduction in the tracking error norm
over the neural net direct adaptive control.

Figures 8 and 9 illustrate the convergence of the parameter estimation of the stability derivative Cm,q and the
control derivative Cm,δe for the recursive least-squares learning law. We note that the value of R controls the learning
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Fig. 5 Roll response.

Fig. 6 Yaw response.

Fig. 7 Tracking error norm.
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Fig. 8 RLS learning law convergence of stability derivative Cm,q.

Fig. 9 RLS learning law convergence of control derivative Cm,δe .

rate of the recursive least-squares learning law. As R increases, the stability and control derivative estimates converge
very rapidly to their correct values after only a very short time.

Figures 10 and 11 illustrate the learning characteristics of the indirect adaptive learning law. Comparing with
Figs. 8 and 9, the parameter convergence of the indirect adaptive learning law is much poorer than the recursive
least-squares learning law. As the learning rate matrix � increases further, the parameters do not seem to converge
as with the recursive least-squares learning law. The poor parameter estimation of the indirect adaptive learning law
can be explained by the fact that the learning law is established by the Lyapunov stability theory strictly to maintain
stability of the tracking error without regards for minimizing the modeling or dynamic inversion error. The good
performance of the recursive least-squares learning law is attributable to the optimal estimation process built into
the learning law. Thus, while the indirect adaptive learning law can improve the command-tracking performance
over the neural net direct adaptive control, the recursive least-squares learning law appears much more promising
in its ability to perform parameter estimation with an accurate and rapid parameter convergence that can be used
to refine the plant dynamics in the intelligent flight control. After updating the plant dynamics, a more accurate
dynamic inversion controller can be computed. This will then result in a reduction in the modeling error, leading to
an improved command-tracking performance.
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Fig. 10 Indirect adaptive learning law convergence of stability derivative Cm,q.

Fig. 11 Indirect adaptive learning law convergence of control derivative Cm,δe .

IV. Conclusions
This paper presents a recent development of a hybrid intelligent flight control method to provide an opportunity to

perform parameter estimation of aircraft plant dynamics in conjunction with an existing neural net direct adaptation
strategy. A potential benefit offered by this proposed method is that it can reduce the possibility of a high gain control
in the current direct adaptive intelligent flight control. The online parameter estimation of the plant dynamics is
provided by two adaptive learning laws: an indirect adaptive learning law based on the Lyapunov stability theory and
a recursive least-squares learning law based on the optimal estimation method. A control simulation of a damaged
generic aircraft shows that the hybrid intelligent flight control with the indirect adaptive learning law can provide
an improvement in the tracking performance over the neural net direct adaptation strategy. The results further show
that the recursive least-squares learning law provides an excellent parameter estimation with an acurate and rapid
parameter convergence. In summary, the hybrid intelligent flight control with the recursive least-squares learning
law appears quite promising as compared to that with the indirect adaptive learning law.
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Appendix A
A is assumed to be Hurwitz. Let W = W∗ + W̃ and � = �∗ + �̃ where the asterisk symbol denotes the ideal

weight matrices that cancel out the residual error 
ε and the tilde symbol denotes the weight deviations. The ideal
weight matrices are unknown but they may be assumed constant and bounded to stay within a �-neighborhood of
the error ε such that

� = sup
ω,σ,δ

∣∣W∗�β + ��θ − 
ε
∣∣ (A1)

We define the following Lyapunov candidate function

V = e�Pe + tr

(
W̃

�
W̃

	
+ �̃

�
�−1�̃

)
(A2)

where P � 0 and tr(.) denotes the trace operation.
The time derivative of the Lyapunov candidate function is computed as

V̇ = ė�Pe + e�Pė + 2tr

(
W̃

� ˙̃W
	

+ �̃
�
�−1 ˙̃

�

)
(A3)

Defining A�P + P�A = −Q, we obtain

V̇ � −e�Qe + 2e�PB
(

W̃
�
β + �̃

�
θ + �

)
+ 2tr

[
−W̃

�
βe�PB − μW̃

� ∥∥e�PB
∥∥ (

W∗ + W̃
)

+ �̃
�
�−1 ˙̃

�
]
(A4)

Now adding and subtracting 2tr
(
�̃

�
η

∥∥e�PB
∥∥ �

)
to and from the right-hand side yields

V̇ � −e�Qe + 2e�PB
(

W̃
�
β + �̃

�
θ + �

)
+ 2tr

[
−W̃

�
βe�PB − μW̃

� ∥∥e�PB
∥∥ (

W∗ + W̃
)

− �̃
�
η

∥∥e�PB
∥∥ (

�∗ + �̃
)

+ �̃
� (

�−1 ˙̃
� + η

∥∥e�PB
∥∥ �

)]
(A5)

Completing the square yields

2tr
[
−μW̃

� ∥∥e�PB
∥∥ (

W∗ + W̃
)

− �̃
�
η

∥∥e�PB
∥∥ (

�∗ + �̃
)]

= −2μ
∥∥e�PB

∥∥ (∥∥∥∥W∗

2
+ W̃

∥∥∥∥
2

−
∥∥∥∥W∗

2

∥∥∥∥
2
)

− 2
∥∥e�PB

∥∥ (∥∥∥∥η

(
�∗

2
+ �̃

)∥∥∥∥
2

−
∥∥∥∥η�∗

2

∥∥∥∥
2
)

(A6)

Let λmin and λmax be the minimum and maximum eigenvalue operators on Q and P. As ‖B‖ = 1 and ˙̃
� = �̇, we

establish that

V̇ � −λmin (Q) ‖e‖2 + λmax (P) ‖e‖
2

(
4 ‖�‖ + μ

∥∥W∗∥∥2 + ∥∥η�∗∥∥2
)

− 2λmin (P) ‖e‖
(

μ

∥∥∥∥W∗

2
+ W̃

∥∥∥∥
2

+
∥∥∥∥η

(
�∗

2
+ �̃

)∥∥∥∥
2
)

+ 2tr
[
�̃

� (
�−1�̇ + θe�PB + η

∥∥e�PB
∥∥ �

)]
(A7)

To guarantee that V̇ � 0, we require that the trace operator be equal to zero, thus resulting in the indirect adaptive
learning law in Eq. (22). In addition, we also require that the error tracking norm is bounded from below by

‖e‖ >
λmax (P)

2λmin (Q)

(
4 ‖�‖ + μ

∥∥W∗∥∥2 + ∥∥η�∗∥∥2
)

(A8)
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The time rate of change of the Lyapunov candidate function is then strictly negative and therefore it would guarantee
that the signals are bounded as

V (∞) � V (0) − 2λmin (P)

∫ ∞

0
‖e‖

(
μ

∥∥∥∥W∗

2
+ W̃

∥∥∥∥
2

+
∥∥∥∥η

(
�∗

2
+ �̃

)∥∥∥∥
2
)

dt (A9)

Thus, the value of V as t → ∞ and the tracking error e are decreasing and uniformly bounded. Furthermore, if
� = 0, μ = 0, and η = 0, we establish by means of the LaSalle–Yoshizawa theorem that limt→∞ ‖e‖ → 0 so that∥∥�̇

∥∥ → 0 as t → ∞. This means that in theory the indirect adaptive learning law will result in a convergence of

the estimated 
F̂1, 
F̂2, and 
Ĝ to their steady-state values if there is no neural network approximation error. In
addition, for the online estimation to converge to their correct values, the input signals must be sufficiently rich to
excite all frequencies of interest in the plant dynamics. This condition is known as a persistent excitation (PE) and
is defined as [13]

α0 �
∫ t+T0

t

θ (τ ) θ� (τ ) dτ � α1 (A10)

where α0, α1, T0 > 0.
The effect of the e-modification parameter η is to increase the negative time rate of change of the Lyapunov

candidate function so that as long as the effects of unmodeled dynamics and or disturbances do not exceed the value
of V̇ , the adaptive signals should remain bounded.

Appendix B
The recursive least-squares learning law can be derived from the optimal estimation method by considering the

following cost function

J (�) = 1

2

∫ t

0
(1 + ξ)−1

∥∥ε̂ − ��θ
∥∥ dτ (B1)

To minimize the cost function, we compute its gradient with respect to the weight matrix and set it to zero, thus
resulting in

∂J

∂�

�
= −

∫ t

0
(1 + ξ)−1 θ

(
ε̂

� − θ��
)

dτ = 0 (B2)

Equation (56) is then written as

∫ t

0
(1 + ξ)−1 θθTdτ� =

∫ t

0
(1 + ξ)−1 θε̂

Tdτ (B3)

Let

R−1 =
∫ t

0
(1 + ξ)−1 θθTdτ > 0 (B4)

We note that

R−1R = I ⇒ Ṙ
−1

R + R−1Ṙ = 0 (B5)

Differentiating Eq. (57) yields

R−1�̇ + (1 + ξ)−1 θθ�� = (1 + ξ)−1 θε̂
� (B6)

From Eqs. (59) and (60), we obtain the recursive least-squares learning law according to Eqs. (35) and (36).
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The recursive least-squares learning law can be shown to be stable and result in bounded signals. To show this,
we let � = �∗ + �̃ with the asterisk and tilde symbols denoting ideal weights and weight deviations, respectively.
We choose the following Lyapunov candidate function

L = V + tr
(
�̃

�
R−1�̃

)
(B7)

where V is the Lyapunov candidate function for the neural net direct adaptive control and we have established that
V̇ � 0. The time rate of change of the Lyapunov candidate function is computed as

L̇ = V̇ + tr
(

2�̃
�

R−1 ˙̃
� + �̃

�
Ṙ

−1
�̃

)
(B8)

The weight matrix � can be shown to converge to the ideal weights �∗ [13] so that

˙̃
� = − (1 + ξ)−1 Rθθ��̃ (B9)

Substituting Eq. (B9) into Eq. (B8) results in

L̇ = V̇ − (1 + ξ)−1 tr
(
�̃

�
θθ��̃

)
� 0 (B10)

As L̇ is negative semi-definite, the recursive least-squares learning law is stable.
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